OVERVIEW OF A MEDIUM-VOLTAGE UPS SYSTEM IN A UTILITY SUBSTATION

By
Bradford P. Roberts
S&C Electric Company
Power Electronics Division
East Troy, Wisconsin

April 26, 2001

- Origin of the Project
- Solution Analysis and Justification
- UPS System Description
- Implementation Overview
- Performance Results

Origin of the Project

- High volume semiconductor wafer FAB operation.
- Concern about loss of "in-process" chips and meeting customer production schedules.
- Number of utility disturbances considered too high.
 - March through August 1999
 - Shallow voltage sags (up to 20%)......3
 - Deep voltage sags (up to 50%)......9
 - Momentary event (greater than 50%)......1

Solution Analysis and Justification

- Customer facilities engineering under analysis of solution alternatives to mitigate voltage disturbances:
 - Conventional low voltage UPS distributed throughout facility to protect most critical equipment only (approximately 4000 kVA).
 - Solid-State Source Transfer Switch (STS) between two utility feeders at 12.47 kV.
 - Medium voltage UPS (12.5 MVA @ 12.47 kV) to protect entire FAB.

Solution Analysis and Justification

Solution	Events Totally	% of Mitigation
	Mitigated	
Subcycle STS ¹	2 of 13	15%
Low Voltage UPS ²	9 of 13	69%
Medium Voltage UPS	13 of 13	100%

Comments

- 1. Utility substation feed by 69 kV loop transmission line. Majority of events transmission related.
- 2. Low voltage UPS sufficient to protect FAB tools (13 of 13), but production impacted by interaction of unprotected portions of the load.

Solution Analysis and Justification

- Medium voltage UPS chosen as most cost effective solution
 - Payback projected to be less than 24 months.
 - No requirement on building space in FAB.
 - Lower overall life cycle cost.
 - Installation of solution had to be "do-able" without a utility service outage.
 - Utility willing to cooperate on medium voltage solution.

UPS System Description

- Actual load profiles analyzed to determine current kVA and kW usage.
- Customer conducted projected load growth study.
- UPS Load Capacity:
 - 10-11 MVA peak in summer
 - 12-13 MVA projected total
- UPS System Rating:
 - Initial Capacity = 12.5 MVA/10.0 MW at 12.47 kV
 - Ultimate Capacity = 15.0 MVA/12.0 MW at 12.47 kV

Semiconductor Wafer FAB Phoenix, AZ

Outdoor 2,500 kVA UPS Container (8 x 313 kVA Power Modules)

313 kVA/250 kW Power Module With 30 Seconds of Battery Storage

Medium Voltage Power Electronic Switch

- Completion of project in shortest time a priority.
- Team effort essential.
 - Customer: STMicroelectronics
 - Utility: Arizona Public Service
 - UPS Supplier: S&C Electric Company
- Choose best location for ease of installation and schedule.
- All parties shared construction responsibility.
 - APS Main feeders and civil construction
 - S&C Equipment installation, power/control interconnection and testing
 - ST Instrumentation/communication conduits to plant

Implementation Overview Utility Substation Plan

Implementation Overview Substation Equipment Layout Plan

Implementation Overview System Factory Testing

Performance Results

- System placed in service August 17, 2000.
- First utility disturbance experienced on August 30, 2000.
- Total of 11 utility disturbances mitigated through March 2001.

Performance Results

System Operation/Utility Disturbances Log - STMicroelectronics					
DATE	TIME HRS/MIN/SEC	DURATION SECONDS	CYCLES	COMMENT	
08/30/00	16:34:03	1.0	61	25% voltage sag	
09/02/00	11:54:16	1.5	87	44% voltage sag	
10/22/00	05:56:55	0.7	42	Not logged	
12/09/00	06:24:31	0.7	43	16% voltage sag	
12/27/00	00:26:04	0.6	38	15% voltage sag	
01/12/01	04:07:25	0.6	33	14% voltage sag	
02/02/01	16:36:31	1.6	93	36% voltage sag	
02/02/01	16:55:27	0.7	39	Not logged	
02/17/01	00:44:29	0.6	36	21% voltage sag	
02/25/01	05:53:41	0.6	37	18% voltage sag	
03/04/01	13:28:24	1.27	76	18% voltage sag	

